Pandemic Preparedness, Antiviral Development, Vaccines and the Shared Goals

December 9, 2021
Carl W. Dieffenbach
Two-pronged approach to catalyze the development of a robust pipeline of antivirals

Discovery

Build a sustainable platform to discover new antivirals by:

- Establishing multi-investigator, and multi-disciplinary discovery groups (AViDD Centers)
- Using structural and systems methods to identify potential drug targets shared across key viral pathogens
- Progressing promising candidates to IND\(^1\)-enabling work

Development

Accelerate clinical testing of promising antiviral candidates by:

- Supporting key non-clinical and early clinical studies
- Establishing public-private partnerships to supplement private sector capabilities (including facilitating third-party collaborations)
- De-risking candidates for further late-stage development

1. IND – Investigational New Drug
7 viral families in-scope for the APP

<table>
<thead>
<tr>
<th>Basic research and discovery</th>
<th>Non-Clinical development</th>
<th>Early Clinical development</th>
<th>Late Clinical development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronaviridae – MERS, SARS-CoV-2</td>
<td>Coronaviridae (only SARS-CoV-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunyavirales – Lassa, Junin, Rift Valley Fever Virus, Andes, Sin Nombre, LaCrosse, California Encephalitis, Crimean Congo Hemorrhagic Fever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filoviridae – Ebola, Marburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaviviridae – Dengue, Zika, West Nile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramyxoviridae – Nipah, Hendra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picornaviridae – EV-D68, EV-A71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Togaviridae – Chikungunya, EEE, VEE, WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple mechanisms of targeted support coordinated across the drug Discovery-Development pipeline

<table>
<thead>
<tr>
<th>Basic research and discovery</th>
<th>Non-Clinical development</th>
<th>Early Clinical development</th>
<th>Late Clinical development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target ID & Validation</td>
<td>Hit ID</td>
<td>Lead Screening & Optimization</td>
<td>Lead Candidate and IND-Enabling</td>
</tr>
</tbody>
</table>

NIAID

AViDD Centers (U19 Cooperative Agreements)

- Preclinical Services (PCS) Contracts
- Early Clinical Phase Contracts
- Product Development/Public-Private Partnership Contracts

NCATS

Screening & Drug Development Collaborations

BARDA

Contracting for Early Clinical CMC
Contracting for Advanced Clinical Development

1. CMC – Chemistry and Manufacturing Controls
Progress on Discovery Pillar

- Published Antiviral Drug Discovery Centers (AViDD) on July 9, 2021
 - Applications received October 22, 2021
 - 38 applications passed initial review for being within scope and completeness

- Created a portal to capture and track requests for preclinical support
 - 3,691 queries reviewed to date
 - 22 submissions of bona fide leads from labs and companies identified

- Established a database of sequence variants for the 3CL Pro. Mapped these variants into the 3D structure of the protein. Looking at binding patterns of drug leads into the structure.
 - Good news, both Pfizer or Shionogi compounds are potent against currently circulating variants (Omicron not known as of 12/02/2021)

- Expanded the preclinical services to make them scalable for significant increase in demand for support

- Worked with all APP partners to harmonize activities
Objective: To establish multidisciplinary Centers focused on discovery and development of antivirals against coronaviruses (CoVs) and one or more select RNA viruses with pandemic potential.
Role of Industry

- Active industry participation is required for projects and activities involved in optimization of novel antiviral candidates to ensure input of medicinal chemistry and pharmacology expertise.
 - For the purpose of this FOA, "industry" is defined as a large or small, domestic or foreign, pharmaceutical, biotechnology, bioengineering, or chemical company, or a related non-profit entity.
- Early target identification and validation efforts in the Centers may be accomplished without industrial participation.
Multiple mechanisms of targeted support coordinated across the drug Discovery-Development pipeline

<table>
<thead>
<tr>
<th>Basic research and discovery</th>
<th>Non-Clinical development</th>
<th>Early Clinical development</th>
<th>Late Clinical development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target ID & Validation</td>
<td>Hit ID</td>
<td>Lead Screening & Optimization</td>
<td>Lead Candidate and IND-Enabling</td>
</tr>
</tbody>
</table>

NIAID

- AViDD Centers (U19 Cooperative Agreements)
- Preclinical Services (PCS) Contracts
- Early Clinical Phase Contracts
- Product Development/Public-Private Partnership Contracts

NCATS

- Screening & Drug Development Collaborations

BARDA

- Contracting for Early Clinical CMC
- Contracting for Advanced Clinical Dev.

1. CMC – Chemistry and Manufacturing Controls
Progress on the Development Pillar

- Advancing candidates into clinical trials
- Assisted Pfizer in nonclinical evaluations, designed the protocol that Pfizer successfully implemented for Paxlovid
- ACTIV-2 will not be evaluating AT527, the polymerase inhibitor from ATEA/Roche
 - Drug failed in phase 1 and Roche pulled out of the collaboration
 - BARDA cancelled the contract with company
 - APP Discovery Team is working with ATEA to evaluate their alternative leads
- New data submitted for the 11/30 FDA meeting on molnupiravir is quite concerning, FDA committee voted 13-10 for approval (11/30/2021)
- Shionogi trial to be performed in ACTIV-2B with the 3CL protease inhibitor S-216622, submitted to FDA and enrollment will begin in January 2022. Trial currently on FDA clinical hold
- Ongoing conversations with other companies
 - Enanta—3CL PI
 - Pardes—3CL PI
 - Cocrystal Pharma—3CL PI, Polymerase inhibitor
 - Norvartis—3CL PI
Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

Preclinical Therapeutics

ACTIV1 (NCATS)
Inpatient, Ph. 3 Master Protocol
Immunomodulators: infliximab, abatacept, cenicriviroc

ACTIV2 (NIAID)
Adapt Out COVID (A5401), Ph. 2/3 Outpatient RCT;
mAbs: (Lilly, Brii Bio, AZ, RU/BMS), pABs (SAB), interferon-beta, DARPin, S-217622 and more to come

ACTIV3 (NIAID, NHLBI)
Tx for Inpatients w/COVID-19
Ph. II/III Inpatient RCT;
mAbs: (Lilly, Brii Bio, GSK-Vir, AZ), DARPin, Pfizer PI, aviptadil

Clinical Trials

ACTIV4 (NHLBI)
Antithrombotics, antiplatelets: Inpatient: UF/LMW heparin, P2Y12 inhibitors
Outpatient: apixaban, aspirin
Host Tissue: Inpatient: TXA127, TRV027

ACTIV5 (NIAID)
Big Effect Trial (BET)
Inpatient; proof-of-concept study in hospitalized adults: Risankizumab, lenzilumab, danicopan

ACTIV6 (NCATS)
Outpatient; Phase III master protocol, re-purposed agents:
Ivermectin, fluvoxamine, fluticasone
Pandemic Preparedness - Vaccines
Vaccine Development for Pandemic Preparedness

- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach
Vaccine Development for Pandemic Preparedness

- Priority-Pathogen Approach

- Platform Approach

- Prototype-Pathogen Approach
Priority Pathogen Approach Will Focus On the Same Seven RNA Virus Families With Pandemic Potential

- **Coronaviridae**
 - e.g., SARS-Cov-2, MERS

- **Bunyaviridae**
 - e.g., Hemorrhagic fevers, Hantavirus, Lassa fever

- **Filoviridae**
 - e.g., Ebola, Marburg

- **Flaviviridae**
 - e.g., West Nile, Dengue

- **Paramyxoviridae**
 - e.g., Nipah, RSV

- **Picornaviridae**
 - e.g., Enterovirus D68

- **Togaviridae**
 - e.g., Chikungunya
Vaccine Development for Pandemic Preparedness

- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach
Vaccine Platform Technologies

Genetic immunization (DNA and RNA vaccines)
- SARS, MERS, West Nile, Zika, RSV

Viral vector (e.g., VSV, adenovirus)
- Ebola, Marburg, Zika

Nanoparticles (viral protein on particle)
- Influenza, Malaria, RSV

Virus-like particle (VLP)
- (no RNA or DNA; non-infectious)
- Chikungunya, Zika, WEVEE

Recombinant protein
- Influenza, RSV

Adjuvants (e.g., AS01, MF59)

Selected Examples
Vaccine Development for Pandemic Preparedness

- Priority-Pathogen Approach

- Platform Approach

- Prototype-Pathogen Approach
Genus Flavivirus

Japanese encephalitis
West Nile virus
Zika virus
Dengue virus
Yellow fever virus
Tick-borne encephalitis virus
Applying Strategies and Tools from One Virus to Inform Vaccine Design for Related Viruses

- Basic virology (e.g., neutralization mechanisms)
- Assays for preclinical and clinical settings
- Animal models
- Antigenic targets
- Optimal platforms
- Potential immune correlates
- Manufacturing strategies
Prototype Pathogen Approach To Vaccine Development

Build on Prior Experiences
Monoclonal Antibodies

- An output from the vaccine development for pandemic preparedness will be monoclonal antibodies
- Monoclonals serve as a bridge between antivirals and vaccine efforts
- As an incredibly useful, virus-specific biologic, these can:
 - Serve as reagents to assess vaccine responses
 - Be developed and deployed as first wave of treatment and prevention
- Can be selected for breadth and matured for potency