NIH ACTIV THERAPEUTICS CLINICAL TRIALS

I. Overview and Updates

II. Host Tissue-Directed Therapeutics

NIH Advisory Council to the Director Briefing

December 9, 2021
Rising to the Public Health Challenges of COVID-19 and Beyond: Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

VISIONARY LEADERSHIP
Providing partnership, dedication, and support to ACTIV Therapeutic Clinical Enterprise

- Unparalleled public-private partnership
- Collaborative forum to identify most promising interventions and accelerate clinical testing
 - Launch and open sharing of master protocols for evaluating candidates
 - Improve clinical trial capacity/effectiveness by leveraging infrastructure and expertise from across NIH and non-NIH networks and CROs
- Accelerate evaluation of vaccine candidates to enable rapid authorization or approval
- Identify emerging variants and coordinate data sharing (TRACE WG)
- Unprecedented data sharing between academia and industry

ACTIV enterprise provides pathway and model for future preparedness efforts
ENROLLMENTS & ACTIVATION
13,813 Patients enrolled into ACTIV trials
700+ Sites in partnership with multiple networks including ACTG, CONNECTS, DCRI, INSIGHT, PETAL, CTSN, PCORnet, CTSA, IDeA Sites, ACTT, and others

PUBLICATIONS
17 Scientific Publications on ACTIV Trials released in 7 Medical Journals
These publications have been cited 478 times (Google Scholar)

AGENT REVIEWS & AUTHORIZATIONS
800+ Total agents reviewed by ACTIV Tx-Clinical and CONNECTS WGs Agent Review Panels

15 Agents fully enrolled and completed testing through the ACTIV Master Protocols

4 Agents proven efficacious against COVID-19 in analysis of data from ACTIV Trials. Other priority agents being tested

• EUA ACHIEVEMENTS:
 • Lilly monoclonal approval
 • Brii Bio rolling submission
 • AZ applying for EUA intending to have ACTIV outpatient data noted in the submission package
• Both the Merck and Pfizer compounds being assessed for EUA were originally selected for testing in ACTIV trials
• ACTIV-4 work on heparin and other anticoagulants changed clinical practice
<table>
<thead>
<tr>
<th>Master Protocol</th>
<th>Protocol Description</th>
<th>Current Trial Status</th>
</tr>
</thead>
</table>
| **ACTIV-1** | • Inpatient, RCT, Double-blind Phase III Master Protocol
 • Host-targeted Immune Modulators
 • NCATS TIN + DCRI + TRI + CRO
 • Target Sample Size (Patients per Arm): 540
 • Trial launched on October 16, 2020
 • Agent(s) being tested: Abatacept, Cenicriviroc, Infliximab | |
| **ACTIV-2** | • Outpatient, RCT, Double-blind Phase II/III Master Protocol
 • Neutralizing Monoclonal Antibodies (nMABs) and Oral Antivirals
 • NIAID ACTG + CRO
 • Target Sample Size (Patients per Arm): 110 [Phase II] & 600 [Phase III]
 • Trial launched on August 3, 2020
 • Agent(s) being tested: nMABs (Lilly, Brii Bio, RU-BMS), IFN-beta (Synairgen), camostat (Sagent), nPAB (SAB) | |
| **ACTIV-3** | • Inpatient, RCT, Double-blind Phase III Master Protocol
 • Neutralizing Monoclonal Antibodies and other (e.g., protease inhibitor)
 • NIAID INSIGHT + NHLBI PETAL + NHLBI CTSN + VA + CRO
 • Target Sample Size (Patients per Arm): 500
 • Trial launched on August 4, 2020
 • Agent(s) being tested: nMABs (Lilly, Brii, GSK-Vir,AZ), DARPin (Molecular Partners), protease inh. (Pfizer) | |
| **ACTIV-3B** | • Inpatient, RCT, Double-blind Phase III Master Protocol
 • Host-targeted Immune Modulators
 • NIAID INSIGHT + NHLBI PETAL + NHLBI CTSN + VA + CRO
 • Target Sample Size (Patients per Arm): 310
 • Trial launched on April 21, 2021
 • Agent(s) being tested: Aviptadil (VIP) (NeuroRX)
 • Agents in the Pipeline: Immune Modulators for ARDS | |
NIH ACTIV THERAPEUTICS MASTER PROTOCOL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Master Protocol</th>
<th>Protocol Description</th>
<th>Current Trial Status</th>
</tr>
</thead>
</table>
| **ACTIV-4A** | • Inpatient, Pragmatic, Randomized, Open Label Phase III Master Protocol
• Host-tissue Directed Therapeutics including Anticoagulants, Anti-platelet, other Anti-thrombotics
• NHLBI CONNECTS Network
• Target Sample Size (Patients per Arm): 1000 | **Trial launched on September 17, 2020**
• Agent(s) being tested: LMWH, UFH, P2Y12 Inhibitors (Anti-platelet Agents); |
| **ACTIV-4B** | • Outpatient, Randomized, Double-blind Phase III Master Protocol
• Host-tissue Directed Therapeutics: Anticoagulants, Anti-platelet, other Antithrombotics
• NHLBI CONNECTS Network
• Target Sample Size (Patients per Arm): 1750 | **Trial launched on September 17, 2020**
• Agent(s) being tested: Low-dose Aspirin, Prophylactic-dose Apixaban, Therapeutic-dose Apixaban |
| **ACTIV-4C** | • Outpatient, Convalescent, RCT, Double-blind Phase III Master Protocol
• Host-tissue Directed Therapeutics: Anticoagulants, Anti-platelet, other Antithrombotics
• NHLBI CONNECTS Network
• Target Sample Size (Patients per Arm): 2660 | **Trial launched on February 9, 2021**
• Agent(s) being tested: Apixaban |
| **ACTIV-4HT** | • Inpatient, Pragmatic, Randomized, Open Label Phase II/III Master Protocol
• Host-tissue Targeted Therapies (Most focusing on RAAS Pathway Regulation)
• NHLBI CONNECTS Network
• Target Sample Size (Patients per Arm): 300+ | **Trial launched on July 2021**
• Agent(s) being tested: TXA127, TRV027, Fostamatinib |
NIH ACTIV THERAPEUTICS MASTER PROTOCOL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Master Protocol</th>
<th>Protocol Description</th>
<th>Current Trial Status</th>
</tr>
</thead>
</table>
| **ACTIV-5** | • Inpatient, Randomized, Double-blind Phase II Master Protocol
• Proof of Concept Study to Identify Promising Immuno Modulators
• NIAID + CRO
• Target Sample Size (Patients per Arm): 500 | **Trial launched on October 9, 2020**
• Agent(s) being tested: Risankizumab, Lenzilumab, Danicopan |
| **ACTIV-6** | • Outpatient, RCT, Double-blind Phase III Master Protocol
• Existing Prescription and Over-the-counter Medications
• NCATS + DCRI + PCORnet + SignalPath + CRO
• Target Sample Size (Patients per Arm): 300 | **Trial launch on July 1, 2021**
• Agent(s) being tested: Ivermectin, fluvoxamine, fluticasone |
Status Summary of ACTIV Agents: Completed and Currently Under Study

<table>
<thead>
<tr>
<th>ACTIV-1</th>
<th>Enrolling But Not Yet Reviewed for Efficacy / Futility</th>
<th>Ceased Enrollment (due to futility / low clinical value)</th>
<th>Continuing Enrollment (i.e., passed interim futility assessment)</th>
<th>Completed Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Cenicriviroc<sup>1</sup></td>
<td>• Infliximab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Abatacept</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIV-2/2B</th>
<th></th>
<th>• AZD7442 (IM)<sup>*</sup></th>
<th>• SAB-185</th>
<th>• Brii-196/Brii-198<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• AZD7442 (IV)<sup>*</sup></td>
<td>• SNG001 IFN-beta</td>
<td>• LY-CoV-555<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Camostat Mesylate<sup>1</sup></td>
<td>• Camostat Mesylate<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BMS-986414/BMS-986413<sup>1</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIV-3/3B</th>
<th>Aviptadil and/or Remdesivir</th>
<th>• LY-CoV-555<sup>1</sup></th>
<th></th>
<th>• AZD7442 (IV) (awaiting topline data)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pfizer PF-0730481</td>
<td>• Brii-196/Brii-198<sup>1</sup></td>
<td>• VIR-783<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Camostat Mesylate<sup>1</sup></td>
<td>• DARPin MP0420<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIV-4A</th>
<th>Therapeutic Heparin and P2Y12 Inhibitors in Moderately-ill Pts<sup>1</sup></th>
<th>• Prophylactic Heparin and P2Y12 Inhibitors in Critically-ill Pts</th>
<th>• Un-fractionated and Low Molecular Weight Heparin<sup>2</sup></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACTIV-4B</th>
<th>• Aspirin<sup>1</sup></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Apixaban</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIV-4C</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIV-4HT</td>
<td>• TXA127</td>
<td>• TRV027</td>
<td>• TXA127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fostamatinib</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIV-5</th>
<th>Danicopan</th>
<th>• Lenzilumab</th>
<th>• Risankizumab (awaiting topline data)</th>
<th></th>
</tr>
</thead>
</table>

| ACTIV-6 | Fluvoxamine | • Fluticasone | • Ivermectin | |

[*]Enrollment ceased at company’s request
¹Denotes agent lack of efficacy
²Denotes proven agent efficacy
Iterative learning process: Determining which therapeutic strategies work/don’t work in which clinical setting/stage of disease/patient group
NIH ACTIV CLINICAL TRIALS TARGETING STAGES OF DISEASE

20% Patients progress to moderate/severe disease requiring hospitalization

Severity of illness

No Illness

Stage I
(Early infection; Outpatient; ~80% patients)

Viral response phase

Stage II
(Pulmonary phase; Host-tissue injury; Inpatient; ~15% patients)

Hospitalized; (No active medical problems → On O₂)

ACTIV-2, ACTIV-4b, ACTIV-6

ACTIV-1, ACTIV-3, ACTIV-3b, ACTIV-4a, ACTIV-4 Host Tissue and ACTIV-5

Stage III
(Hyperinflammation phase; Host-tissue injury; Inpatient ICU; ~5% patients)

Hospitalized; (High Flow O₂ → Mechanical Ventilation)

Host inflammatory and Host-tissue response phase

Post Illness

Clinical signs and symptoms

No Infection

Infected; Not Hospitalized (With or without limitations)

Death

Convalescence

Potential Master Protocol

ACTIV-4c

- Majority (~80%) of SARS-CoV-2 infected patients experience mild to moderate symptoms resolving w/in 6–10 days
- ~20% of patients develop severe illness w/ typical interstitial bilateral pneumonia and ARDS; associated w/high fatality rate
- Progression to more severe disease due to multi-tissue/organ dysfunction
 - Endothelial dysfunction, systemic coagulopathy and complement-induced thrombosis with development of systemic microangiopathy and thromboembolism
- Host tissue and organ targets: lung epithelium, vascular endothelium, brain, kidney, gut, heart, and eye (among others)
- Therapeutic interventions targeting host-tissue responses are a critical complement to direct anti-virals and passive immune strategies

*Illustrations credit: Anna & Elena Balbusso https://magazine.ucsf.edu/we-thought-it-was-just-respiratory-virus
Progressive COVID-19 characterized by severe inflammatory response, hypoxia, multi-tissue/organ injury due to direct and indirect viral mediated effects; high endothelial cell expression of ACE2

- Vascular endotheliopathy and prothrombotic/coagulant state with high rates of thrombotic complications

- Poor prognosis consistently associated with dysregulation of:
 - Renin-angiotensin-aldosterone system (RAAS) leading to oxidative stress, vasoconstriction, endothelial dysfunction, release of P-selectin, and vWF activation
 - Immune response activating complement, neutrophil extracellular traps, and mitogen activated protein kinase pathways
 - Coagulation cascade, thrombosis, and fibrinolysis throughout macro- and microvasculature

Host-tissue example: Lung

ACTIV-4 Host Tissue-Directed Therapeutics
Targeting Host-tissue Dysfunction Following SARS-CoV-2 Infection

Target:

- RAAS Dysregulation
 - Inflammation
 - Hypoxia
 - Fibrosis
 - Capillary Leak

- Vascular Immuno-Thrombo-Inflammation Response
 - Pro-coagulant state
 - Hypo-fibrinolysis

- Hyper-Coagulation

RAAS Agents (TXA127, TRV027)
Fostamatinib
Heparin, DOAC, ASA, P2Y12 inhibitors
Goals

- **Reduce case severity/fatality, speed recovery**
 - Host-Directed Therapeutics Clinical Trials

- **Identify biomarkers and therapeutic targets**
 - Integrated pathobiology/mechanistic studies

- **Enable risk stratification, precision interventions**
 - Screening, Referral and Registries

- **Understand short- and long-term trajectory**
 - Cohort of Cohorts for Long-Term Follow up

- **Target populations most severely affected**
 - Community-Engaged Research Consortium
“Collaborating Network of Networks for Evaluating COVID-19 and Therapeutic Strategies”

Goal: Leverage and expand NHLBI’s national clinical research networks to rapidly and nimbly respond to emerging research and clinical needs for COVID-19

- Part of NIH ACTIV
- Collaboration with NINDS, other ICs
- Leveraging existing assets, data and studies and forging new partnerships
- Comprehensive, expandable platform linking trial network, registries, mechanistic studies, and cohorts
- Facilitating case finding, clinical trial accrual, longitudinal studies, and community engagement

~300+ sites, ~6,500 ppts in clinical trials, ~58,000 ppts in longitudinal studies
ENGAGEMENT AND PARTICIPATION OF DIVERSE POPULATIONS

Enriching enrollment of disproportionately affected communities by leveraging community-engagement, multi-disciplinary partnerships across the NIH, and collaboration with patient groups

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>% U.S. Population¹</th>
<th>% U.S. COVID Cases²</th>
<th>% Ppts in CONNECTS Clinical Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic / Latinx</td>
<td>18.5</td>
<td>27.3</td>
<td>25</td>
</tr>
<tr>
<td>Black</td>
<td>13.4</td>
<td>16.4</td>
<td>22</td>
</tr>
<tr>
<td>Asian</td>
<td>5.9</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td>Native Hawaiian & Pacific Islander</td>
<td>0.2</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>American Indian / Alaska Native</td>
<td>1.3</td>
<td>1.4</td>
<td>1</td>
</tr>
</tbody>
</table>

¹United States Census Bureau (2019) ²Hollis et al. (2021)
HOST TISSUE-DIRECTED CLINICAL TRIAL PLATFORM STRATEGY

- Collaborating with and leveraging international studies examining same classes of agents:
 - Data integration
 - DSMB collaboration

- Learning system: e.g., strategies to enhance trial start up and completion:
 - 10-fold increase # sites activated and 4-fold increase # participants
 - Reaching more patients through new partners: Outreach through local pharmacies (e.g., CVS)
ACTIV-4A: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19

Patient Population: Moderately and severely ill hospitalized patients (+/- ventilatory support)

Interventions/Agents: Heparin, P2Y12 Inhibitors; (Planned: P-Selectin inhibitor (Crizanlizumab),) SGLT2 Inhibitor

Primary Endpoint: Organ Support Free Days (OSFD)

Secondary Endpoints:
- Death, respiratory support, cardiovascular support, renal replacement therapy
- Composite endpoint (discharge or 28 days, whichever occurs first):
 - Death, PE, systemic arterial thromboembolism, MI, ischemic stroke
- Other SecondaryEndpoints:
 - Acute kidney injury, 1° & 2°endpoint components, death during hospitalization, WHO clinical scale, 90-day mortality

Does targeting the pro-thrombotic/pro-coagulant state and endotheliopathy of COVID-19 improve clinical outcomes for hospitalized patients?
ACTIV-4A: A Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19

Prevention Outpatient Asymptomatic Outpatient Symptomatic Emergency Department Hospital Vent/CPAP-free Hospital ICU Convalescence Recovered

Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19

Intervention: Prophylactic or therapeutic dose Heparin

Therapeutic-dose anticoagulation improved survival without need for organ support in moderately ill (non-critical) hospitalized patients but not in critically ill patients

Demonstrated that platelet-derived factors promote an inflammatory hypercoagulable phenotype, and are significant contributors to poor clinical outcomes in COVID-19 patients.

Testing anti-platelet agents
ACTIV-4HT: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of RAAS and other HT-directed Agents in Hospitalized Adults with COVID-19

Patient Population: Moderately and severely ill adult hospitalized patients treated with oxygen for hypoxemia

Interventions/Agents (Arms):
- Renin-Angiotensin-Aldosterone System (RAAS) Agents:
 - TXA127 and TRV027
 - Inhibition of vascular inflammation:
 - Fostamatinib (spleen tyrosine kinase (SYK) inhibitor)
 - Placebo

Target enrollment: 300 per arm

Primary Endpoint: Oxygen-free days from randomization through 28d

Secondary Endpoint: Mortality, WHO 8-point ordinal scale, support-free days through 28d

Can RAAS-targeting agents and/or Fostamatinib prevent COVID-19 host-tissue responses: vascular injury, inflammation, fibrosis, capillary leakage, and thrombosis?

ACTIV-4HT: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of RAAS and other HT-directed Agents in Hospitalized Adults with COVID-19

Hospitalized Patients On Oxygen

Intervention: Fostamatinib (Spleen tyrosine kinase inhibitor)

Builds upon Phase II NHLBI study:

Fostamatinib for the Treatment of Hospitalized Adults With Coronavirus Disease 2019: A Randomized Trial

Phase II Trial of Fostamatinib: Safe in hospitalized patients requiring oxygen and associated w/ trend to clinical and biochemical improvement (esp. in severely ill patients)

POPULATION

388 Women
269 Men

Outpatients with symptomatic COVID-19, platelet count >100,000/mm³, and estimated glomerular filtration rate >30 mL/min/1.73m²
Median age: 54 years

LOCATIONS

52 Sites in the US

INTERVENTION

- 164 Aspirin 81 mg/d + matching placebo for 45 days
- 165 Prophylactic apixaban 2.5 mg twice/d for 45 days
- 164 Therapeutic apixaban 5 mg twice/d for 45 days
- 164 Placebo twice/d for 45 days

657 Patients randomized
558 Patients analyzed

PRIMARY OUTCOME

Composite of all-cause mortality, symptomatic venous or arterial thromboembolism, myocardial infarction, stroke, or hospitalization for cardiovascular or pulmonary cause

ANTI-THROMBOTIC PROPHYLAXIS (ASA, DOAC) IS NOT INDICATED TO REDUCE ADVERSE CARDIOPULMONARY OUTCOMES IN SYMPTOMATIC BUT CLINICALLY STABLE COVID-19 OUTPATIENTS

JAMA | Original Investigation
Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients With Clinically Stable Symptomatic COVID-19
The ACTIV-4B Randomized Clinical Trial
JAMA November 2, 2021 Volume 326, Number 17
ACTIV-4C: A Phase III Multicenter, Adaptive, Randomized Platform Trial Evaluating the Safety and Efficacy of Antithrombotic strategies in COVID-19 Patients Following Hospital Discharge

Intervention-Agent: Apixaban

Patient Population: Enrolling adults > 18 years of age with COVID-19 who are hospitalized > 48 hours and ready for discharge

Primary Endpoint: Thrombotic Event; Binary composite endpoint of venous and arterial thrombotic complications and all-cause mortality

Secondary Endpoint: Individual outcomes of the composite primary endpoint, the time-to-event for the composite primary endpoint, and a clinical rank-based score

Clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT04650087

Can anti-thrombotic therapy in the post-acute setting prevent thrombo-embolic events and improve survival after hospital discharge?
Development of Host Tissue-Directed Therapeutics: Vital to Future Pandemic Preparedness

1. **Initial phase of a viral pandemic**: specific anti-viral agents (i.e. vaccines, anti-virals, or monoclonals) not readily available

2. **Later phases**: Even in presence of specific antiviral reagents, delays in effective protection to all components of the population

3. **Subsequent phase of a viral pandemic**: Pathogen evolves, is able to evade specific antigen recognition upon which vaccine and passive immunization strategies rely, and/or is able to circumvent mechanisms of, for example, specific protease inhibitors

4. **Post-acute infection phase** may be associated with significant host tissue sequelae which will require monitoring and development of therapeutic and prophylactic interventions

Thank you to Patients, Researchers, NIH and HHS Staff, for your critical role in improving COVID-19 therapies.